
2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 1/32

Cosmos Whitepaper

A Network of Distributed Ledgers

Jae Kwon jae@tendermint.com
Ethan Buchman ethan@tendermint.com

For discussions, join our developer chat!

NOTE: If you can read this on GitHub, then we’re still actively developing this
document. Please check regularly for updates!

The combined success of the open-source ecosystem, decentralized file-sharing,
and public cryptocurrencies has inspired an understanding that decentralized
internet protocols can be used to radically improve socio-economic infrastructure.
We have seen specialized blockchain applications like Bitcoin [1] (a cryptocurrency),
Zerocash [2] (a cryptocurrency for privacy), and generalized smart contract
platforms such as Ethereum [3], with countless distributed applications for the
Ethereum Virtual Machine (EVM) such as Augur (a prediction market) and TheDAO
[4] (an investment club).

To date, however, these blockchains have suffered from a number of drawbacks,
including their gross energy inefficiency, poor or limited performance, and
immature governance mechanisms. Proposals to scale Bitcoin’s transaction
throughput, such as Segregated-Witness [5] and BitcoinNG [6], are vertical scaling
solutions that remain limited by the capacity of a single physical machine, in order
to ensure the property of complete auditability. The Lightning Network [7] can help
scale Bitcoin transaction volume by leaving some transactions off the ledger
completely, and is well suited for micropayments and privacy-preserving payment
rails, but may not be suitable for more generalized scaling needs.

An ideal solution is one that allows multiple parallel blockchains to interoperate
while retaining their security properties. This has proven difficult, if not impossible,
with proof-of-work. Merged mining, for instance, allows the work done to secure a
parent chain to be reused on a child chain, but transactions must still be validated,
in order, by each node, and a merge-mined blockchain is vulnerable to attack if a
majority of the hashing power on the parent is not actively merge-mining the child.
An academic review of alternative blockchain network architectures is provided for
additional context, and we provide summaries of other proposals and their
drawbacks in Related Work.

Here we present Cosmos, a novel blockchain network architecture that addresses all
of these problems. Cosmos is a network of many independent blockchains, called
zones. The zones are powered by Tendermint BFT [8], which provides a high-
performance, consistent, secure PBFT-like consensus engine, where strict fork-
accountability guarantees hold over the behaviour of malicious actors. The

Introduction

Start your mission of space exploration today. Browse Cosmos jobs →

By using this website, you agree to our
Cookie Policy.

mailto:jae@tendermint.com
mailto:ethan@tendermint.com
https://discord.gg/vcExX9T
https://bitcoin.org/bitcoin.pdf
http://zerocash-project.org/paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://download.slock.it/public/DAO/WhitePaper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://arxiv.org/pdf/1510.02037v2.pdf
https://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
http://vukolic.com/iNetSec_2015.pdf
https://github.com/tendermint/tendermint/wiki
https://blog.cosmos.network/tendermint-vs-pbft-12e9f294c9ab
https://jobs.cosmos.network/
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 2/32

Tendermint BFT consensus algorithm is well suited for scaling public proof-of-stake
blockchains.

The first zone on Cosmos is called the Cosmos Hub. The Cosmos Hub is a multi-
asset proof-of-stake cryptocurrency with a simple governance mechanism which
enables the network to adapt and upgrade. In addition, the Cosmos Hub can be
extended by connecting other zones.

The hub and zones of the Cosmos network communicate with each other via an
inter-blockchain communication (IBC) protocol, a kind of virtual UDP or TCP for
blockchains. Tokens can be transferred from one zone to another securely and
quickly without the need for exchange liquidity between zones. Instead, all inter-
zone token transfers go through the Cosmos Hub, which keeps track of the total
amount of tokens held by each zone. The hub isolates each zone from the failure of
other zones. Because anyone can connect a new zone to the Cosmos Hub, zones
allow for future-compatibility with new blockchain innovations.

In this section we describe the Tendermint consensus protocol and the interface
used to build applications with it. For more details, see the appendix.

In classical Byzantine fault-tolerant (BFT) algorithms, each node has the same
weight. In Tendermint, nodes have a non-negative amount of voting power, and
nodes that have positive voting power are called validators. Validators participate
in the consensus protocol by broadcasting cryptographic signatures, or votes, to
agree upon the next block.

Validators’ voting powers are determined at genesis, or are changed
deterministically by the blockchain, depending on the application. For example, in a
proof-of-stake application such as the Cosmos Hub, the voting power may be
determined by the amount of staking tokens bonded as collateral.

NOTE: Fractions like ⅔ and ⅓ refer to fractions of the total voting power, never the
total number of validators, unless all the validators have equal weight. >⅔ means
“more than ⅔”, ≥⅓ means “at least ⅓”.

Tendermint is a partially synchronous BFT consensus protocol derived from the DLS
consensus algorithm [20]. Tendermint is notable for its simplicity, performance, and
fork-accountability. The protocol requires a fixed known set of validators, where
each validator is identified by their public key. Validators attempt to come to
consensus on one block at a time, where a block is a list of transactions. Voting for
consensus on a block proceeds in rounds. Each round has a round-leader, or
proposer, who proposes a block. The validators then vote, in stages, on whether to
accept the proposed block or move on to the next round. The proposer for a round
is chosen deterministically from the ordered list of validators, in proportion to their
voting power.

Tendermint

VALIDATORS

CONSENSUS

By using this website, you agree to our
Cookie Policy.

http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 3/32

The full details of the protocol are described here.

Tendermint’s security derives from its use of optimal Byzantine fault-tolerance via
super-majority (>⅔) voting and a locking mechanism. Together, they ensure that:

≥⅓ voting power must be Byzantine to cause a violation of safety, where more
than two values are committed.

if any set of validators ever succeeds in violating safety, or even attempts to do
so, they can be identified by the protocol. This includes both voting for
conflicting blocks and broadcasting unjustified votes.

Despite its strong guarantees, Tendermint provides exceptional performance. In
benchmarks of 64 nodes distributed across 7 datacenters on 5 continents, on
commodity cloud instances, Tendermint consensus can process thousands of
transactions per second, with commit latencies on the order of one to two seconds.
Notably, performance of well over a thousand transactions per second is
maintained even in harsh adversarial conditions, with validators crashing or
broadcasting maliciously crafted votes. See the figure below for details.

A major benefit of Tendermint’s consensus algorithm is simplified light client
security, making it an ideal candidate for mobile and internet-of-things use cases.
While a Bitcoin light client must sync chains of block headers and find the one with
the most proof of work, Tendermint light clients need only to keep up with changes
to the validator set, and then verify the >⅔ PreCommits in the latest block to
determine the latest state.

Succinct light client proofs also enable inter-blockchain communication.

LIGHT CLIENTS

PREVENTING ATTACKS

By using this website, you agree to our
Cookie Policy.

https://github.com/tendermint/tendermint/wiki/Byzantine-Consensus-Algorithm
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 4/32

Tendermint has protective measures for preventing certain notable attacks, like
long-range-nothing-at-stake double spends and censorship. These are discussed
more fully in the appendix.

The Tendermint consensus algorithm is implemented in a program called
Tendermint Core. Tendermint BFT is an application-agnostic “consensus engine”
that can turn any deterministic blackbox application into a distributedly replicated
blockchain. Tendermint BFT connects to blockchain applications via the Application
Blockchain Interface (ABCI) [17]. ABCI is an interface that defines the boundary
between the replication engine (the blockchain), and the state machine (the
application). By using a socket protocol, we enable a consensus engine running in
one process to manage an application state running in another. Thus, the ABCI
allows for blockchain applications to be programmed in any language, not just the
programming language that the consensus engine is written in. Additionally, the
ABCI makes it possible to easily swap out the consensus layer of any existing
blockchain stack.

We draw an analogy with the well-known cryptocurrency Bitcoin. Bitcoin is a
cryptocurrency blockchain where each node maintains a fully audited Unspent
Transaction Output (UTXO) database. If one wanted to create a Bitcoin-like system
on top of ABCI, Tendermint BFT would be responsible for

Sharing blocks and transactions between nodes

Establishing a canonical/immutable order of transactions (the blockchain)

Meanwhile, the ABCI application would be responsible for

Maintaining the UTXO database

Validating cryptographic signatures of transactions

Preventing transactions from spending non-existent funds

Allowing clients to query the UTXO database

Tendermint is able to decompose the blockchain design by offering a very simple
API between the application process and consensus process.

Cosmos is a network of independent parallel blockchains that are each powered by
classical BFT consensus algorithms like Tendermint 1.

The first blockchain in this network will be the Cosmos Hub. The Cosmos Hub
connects to many other blockchains (or zones) via a novel inter-blockchain
communication protocol. The Cosmos Hub tracks numerous token types and keeps
record of the total number of tokens in each connected zone. Tokens can be
transferred from one zone to another securely and quickly without the need for a
liquid exchange between zones, because all inter-zone coin transfers go through
the Cosmos Hub.

ABCI

Cosmos Overview

By using this website, you agree to our
Cookie Policy.

https://github.com/tendermint/abci
http://github.com/tendermint/tendermint
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 5/32

This architecture solves many problems that the blockchain space faces today, such
as application interoperability, scalability, and seamless upgradability. For example,
zones derived from Bitcoind, Go-Ethereum, CryptoNote, ZCash, or any blockchain
system can be plugged into the Cosmos Hub. These zones allow Cosmos to scale
infinitely to meet global transaction demand. Zones are also a great fit for a
distributed exchange, which will be supported as well.

Cosmos is not just a single distributed ledger, and the Cosmos Hub isn’t a walled
garden or the center of its universe. We are designing a protocol for an open
network of distributed ledgers that can serve as a new foundation for future
financial systems, based on principles of cryptography, sound economics,
consensus theory, transparency, and accountability.

The Cosmos Hub is the first public blockchain in the Cosmos Network, powered by
the Tendermint BFT consensus algorithm. The Tendermint open-source project was
born in 2014 to address the speed, scalability, and environmental issues of
Bitcoin’s proof-of-work consensus algorithm. By using and improving upon
proven BFT algorithms developed at MIT in 1988 [20], the Tendermint team was the
first to conceptually demonstrate a proof-of-stake cryptocurrency that addresses
the nothing-at-stake problem suffered by first-generation proof-of-stake
cryptocurrencies such as NXT and BitShares1.0.

Today, practically all Bitcoin mobile wallets use trusted servers to provide them
with transaction verification. This is because proof-of-work requires waiting for
many confirmations before a transaction can be considered irreversibly committed.
Double-spend attacks have already been demonstrated on services like CoinBase.

Unlike other blockchain consensus systems, Tendermint offers instant and provably
secure mobile-client payment verification. Since the Tendermint is designed to
never fork at all, mobile wallets can receive instant transaction confirmation, which
makes trustless and practical payments a reality on smartphones. This has
significant ramifications for Internet of Things applications as well.

Validators in Cosmos have a similar role to Bitcoin miners, but instead use
cryptographic signatures to vote. Validators are secure, dedicated machines that
are responsible for committing blocks. Non-validators can delegate their staking
tokens (called “atoms”) to any validator to earn a portion of block fees and atom
rewards, but they incur the risk of getting punished (slashed) if the delegate
validator gets hacked or violates the protocol. The proven safety guarantees of
Tendermint BFT consensus, and the collateral deposit of stakeholders–validators
and delegators–provide provable, quantifiable security for nodes and light clients.

Distributed public ledgers should have a constitution and a governance system.
Bitcoin relies on the Bitcoin Foundation and mining to coordinate upgrades, but
this is a slow process. Ethereum split into ETH and ETC after hard-forking to
address TheDAO hack, largely because there was no prior social contract nor
mechanism for making such decisions.

Validators and delegators on the Cosmos Hub can vote on proposals that can
change preset parameters of the system automatically (such as the block gas limit),
coordinate upgrades, as well as vote on amendments to the human-readable
constitution that govern the policies of the Cosmos Hub. The constitution allows for

TENDERMINT BFT

GOVERNANCE

By using this website, you agree to our
Cookie Policy.

http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 6/32

cohesion among the stakeholders on issues such as theft and bugs (such as
TheDAO incident), allowing for quicker and cleaner resolution.

Each zone can also have their own constitution and governance mechanism as well.
For example, the Cosmos Hub could have a constitution that enforces immutability
at the Hub (no roll-backs, save for bugs of the Cosmos Hub node implementation),
while each zone can set their own policies regarding roll-backs.

By enabling interoperability among differing policy zones, the Cosmos network
gives its users ultimate freedom and potential for permissionless experimentation.

Here we describe a novel model of decentralization and scalability. Cosmos is a
network of many blockchains powered by Tendermint. While existing proposals aim
to create a “single blockchain” with total global transaction ordering, Cosmos
permits many blockchains to run concurrently with one another while retaining
interoperability.

At the basis, the Cosmos Hub manages many independent blockchains called
“zones” (sometimes referred to as “shards”, in reference to the database
scaling technique known as “sharding”). A constant stream of recent block
commits from zones posted on the Hub allows the Hub to keep up with the state of
each zone. Likewise, each zone keeps up with the state of the Hub (but zones do
not keep up with each other except indirectly through the Hub). Packets of
information are then communicated from one zone to another by posting Merkle-
proofs as evidence that the information was sent and received. This mechanism is
called inter-blockchain communication, or IBC for short.

Any of the zones can themselves be hubs to form an acyclic graph, but for the sake
of clarity we will only describe the simple configuration where there is only one
hub, and many non-hub zones.

The Cosmos Hub is a blockchain that hosts a multi-asset distributed ledger, where
tokens can be held by individual users or by zones themselves. These tokens can be
moved from one zone to another in a special IBC packet called a “coin packet”.
The hub is responsible for preserving the global invariance of the total amount of

The Hub and Zones

THE HUB

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 7/32

each token across the zones. IBC coin packet transactions must be committed by
the sender, hub, and receiver blockchains.

Since the Cosmos Hub acts as the central ledger for the whole system, the security
of the Hub is of paramount importance. While each zone may be a Tendermint
blockchain that is secured by as few as 4 (or even less if BFT consensus is not
needed), the Hub must be secured by a globally decentralized set of validators that
can withstand the most severe attack scenarios, such as a continental network
partition or a nation-state sponsored attack.

A Cosmos zone is an independent blockchain that exchanges IBC messages with the
Hub. From the Hub’s perspective, a zone is a multi-asset dynamic-membership
multi-signature account that can send and receive tokens using IBC packets. Like a
cryptocurrency account, a zone cannot transfer more tokens than it has, but can
receive tokens from others who have them. A zone may be designated as an
“source” of one or more token types, granting it the power to inflate that token
supply.

Atoms of the Cosmos Hub may be staked by validators of a zone connected to the
Hub. While double-spend attacks on these zones would result in the slashing of
atoms with Tendermint’s fork-accountability, a zone where >⅔ of the voting
power are Byzantine can commit invalid state. The Cosmos Hub does not verify or
execute transactions committed on other zones, so it is the responsibility of users
to send tokens to zones that they trust. In the future, the Cosmos Hub’s
governance system may pass Hub improvement proposals that account for zone
failures. For example, outbound token transfers from some (or all) zones may be
throttled to allow for the emergency circuit-breaking of zones (a temporary halt of
token transfers) when an attack is detected.

Now we look at how the Hub and zones communicate with each other. For example,
if there are three blockchains, “Zone1”, “Zone2”, and “Hub”, and we wish for
“Zone1” to produce a packet destined for “Zone2” going through “Hub”. To
move a packet from one blockchain to another, a proof is posted on the receiving
chain. The proof states that the sending chain published a packet for the alleged
destination. For the receiving chain to check this proof, it must be able keep up
with the sender’s block headers. This mechanism is similar to that used by
sidechains, which requires two interacting chains to be aware of one another via a
bidirectional stream of proof-of-existence datagrams (transactions).

The IBC protocol can naturally be defined using two types of transactions: an
IBCBlockCommitTx transaction, which allows a blockchain to prove to any
observer of its most recent block-hash, and an IBCPacketTx transaction, which
allows a blockchain to prove to any observer that the given packet was indeed
published by the sender’s application, via a Merkle-proof to the recent block-
hash.

THE ZONES

Inter-blockchain Communication
(IBC)

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 8/32

By splitting the IBC mechanics into two separate transactions, we allow the native
fee market-mechanism of the receiving chain to determine which packets get
committed (i.e. acknowledged), while allowing for complete freedom on the
sending chain as to how many outbound packets are allowed.

In the example above, in order to update the block-hash of “Zone1” on “Hub”
(or of “Hub” on “Zone2”), an IBCBlockCommitTx transaction must be posted
on “Hub” with the block-hash of “Zone1” (or on “Zone2” with the block-hash
of “Hub”).

See IBCBlockCommitTx and IBCPacketTx for for more information on the two IBC
transaction types.

In the same way that Bitcoin is more secure by being a distributed, mass-replicated
ledger, we can make exchanges less vulnerable to external and internal hacks by
running it on the blockchain. We call this a distributed exchange.

What the cryptocurrency community calls a decentralized exchange today are based
on something called “atomic cross-chain” (AXC) transactions. With an AXC
transaction, two users on two different chains can make two transfer transactions
that are committed together on both ledgers, or none at all (i.e. atomically). For
example, two users can trade bitcoins for ether (or any two tokens on two different
ledgers) using AXC transactions, even though Bitcoin and Ethereum are not
connected to each other. The benefit of running an exchange on AXC transactions
is that neither users need to trust each other or the trade-matching service. The
downside is that both parties need to be online for the trade to occur.

Another type of decentralized exchange is a mass-replicated distributed exchange
that runs on its own blockchain. Users on this kind of exchange can submit a limit
order and turn their computer off, and the trade can execute without the user being
online. The blockchain matches and completes the trade on behalf of the trader.

A centralized exchange can create a deep orderbook of limit orders and thereby
attract more traders. Liquidity begets more liquidity in the exchange world, and so
there is a strong network effect (or at least a winner-take-most effect) in the
exchange business. The current leader for cryptocurrency exchanges today is
Poloniex with a 24-hour volume of $20M, and in second place is Bitfinex with a 24-
hour volume of $5M. Given such strong network effects, it is unlikely for AXC-based
decentralized exchanges to win volume over the centralized exchanges. For a

Use Cases

DISTRIBUTED EXCHANGE

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 9/32

decentralized exchange to compete with a centralized exchange, it would need to
support deep orderbooks with limit orders. Only a distributed exchange on a
blockchain can provide that.

Tendermint provides additional benefits of faster transaction commits. By
prioritizing fast finality without sacrificing consistency, zones in Cosmos can finalize
transactions fast – for both exchange order transactions as well as IBC token
transfers to and from other zones.

Given the state of cryptocurrency exchanges today, a great application for Cosmos
is the distributed exchange (aka the Cosmos DEX). The transaction throughput
capacity as well as commit latency can be comparable to those of centralized
exchanges. Traders can submit limit orders that can be executed without both
parties having to be online. And with Tendermint, the Cosmos hub, and IBC, traders
can move funds in and out of the exchange to and from other zones with speed.

A privileged zone can act as the source of a bridged token of another
cryptocurrency. A bridge is similar to the relationship between a Cosmos hub and
zone; both must keep up with the latest blocks of the other in order to verify proofs
that tokens have moved from one to the other. A “bridge-zone” on the Cosmos
network keeps up with the Hub as well as the other cryptocurrency. The indirection
through the bridge-zone allows the logic of the Hub to remain simple and agnostic
to other blockchain consensus strategies such as Bitcoin’s proof-of-work mining.

Each bridge-zone validator would run a Tendermint-powered blockchain with a
special ABCI bridge-app, but also a full-node of the “origin” blockchain.

When new blocks are mined on the origin, the bridge-zone validators will come to
agreement on committed blocks by signing and sharing their respective local view
of the origin’s blockchain tip. When a bridge-zone receives payment on the origin
(and sufficient confirmations were agreed to have been seen in the case of a PoW
chain such as Ethereum or Bitcoin), a corresponding account is created on the
bridge-zone with that balance.

In the case of Ethereum, the bridge-zone can share the same validator-set as the
Cosmos Hub. On the Ethereum side (the origin), a bridge-contract would allow
ether holders to send ether to the bridge-zone by sending it to the bridge-contract
on Ethereum. Once ether is received by the bridge-contract, the ether cannot be
withdrawn unless an appropriate IBC packet is received by the bridge-contract from
the bridge-zone. The bridge-contract tracks the validator-set of the bridge-zone,
which may be identical to the Cosmos Hub’s validator-set.

In the case of Bitcoin, the concept is similar except that instead of a single bridge-
contract, each UTXO would be controlled by a threshold multisignature P2SH
pubscript. Due to the limitations of the P2SH system, the signers cannot be
identical to the Cosmos Hub validator-set.

Ether on the bridge-zone (“bridged-ether”) can be transferred to and from the
Hub, and later be destroyed with a transaction that sends it to a particular
withdrawal address on Ethereum. An IBC packet proving that the transaction
occurred on the bridge-zone can be posted to the Ethereum bridge-contract to
allow the ether to be withdrawn.

BRIDGING TO OTHER CRYPTOCURRENCIES

Sending Tokens to the Cosmos Hub

Withdrawing Tokens from Cosmos Hub

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 10/32

In the case of Bitcoin, the restricted scripting system makes it difficult to mirror the
IBC coin-transfer mechanism. Each UTXO has its own independent pubscript, so
every UTXO must be migrated to a new UTXO when there is a change in the set of
Bitcoin escrow signers. One solution is to compress and decompress the UTXO-set
as necessary to keep the total number of UTXOs down.

The risk of such a bridgeging contract is a rogue validator set. ≥⅓ Byzantine voting
power could cause a fork, withdrawing ether from the bridge-contract on Ethereum
while keeping the bridged-ether on the bridge-zone. Worse, >⅔ Byzantine voting
power can steal ether outright from those who sent it to the bridge-contract by
deviating from the original bridgeging logic of the bridge-zone.

It is possible to address these issues by designing the bridge to be totally
accountable. For example, all IBC packets, from the hub and the origin, might
require acknowledgement by the bridge-zone in such a way that all state transitions
of the bridge-zone can be efficiently challenged and verified by either the hub or
the origin’s bridge-contract. The Hub and the origin should allow the bridge-zone
validators to post collateral, and token transfers out of the bridge-contract should
be delayed (and collateral unbonding period sufficiently long) to allow for any
challenges to be made by independent auditors. We leave the design of the
specification and implementation of this system open as a future Cosmos
improvement proposal, to be passed by the Cosmos Hub’s governance system.

Solving the scaling problem is an open issue for Ethereum. Currently, Ethereum
nodes process every single transaction and also store all the states. link.

Since Tendermint can commit blocks much faster than Ethereum’s proof-of-work,
EVM zones powered by Tendermint consensus and operating on bridged-ether can
provide higher performance to Ethereum blockchains. Additionally, though the
Cosmos Hub and IBC packet mechanics does not allow for arbitrary contract logic
execution per se, it can be used to coordinate token movements between Ethereum
contracts running on different zones, providing a foundation for token-centric
Ethereum scaling via sharding.

Cosmos zones run arbitrary application logic, which is defined at the beginning of
the zone’s life and can potentially be updated over time by governance. Such
flexibility allows Cosmos zones to act as bridges to other cryptocurrencies such as
Ethereum or Bitcoin, and it also permits derivatives of those blockchains, utilizing
the same codebase but with a different validator set and initial distribution. This
allows many existing cryptocurrency frameworks, such as those of Ethereum,
Zerocash, Bitcoin, CryptoNote and so on, to be used with Tendermint BFT, which is
a higher performance consensus engine, on a common network, opening
tremendous opportunity for interoperability across platforms. Furthermore, as a
multi-asset blockchain, a single transaction may contain multiple inputs and
outputs, where each input can be any token type, enabling Cosmos to serve directly
as a platform for decentralized exchange, though orders are assumed to be
matched via other platforms. Alternatively, a zone can serve as a distributed fault-
tolerant exchange (with orderbooks), which can be a strict improvement over
existing centralized cryptocurrency exchanges which tend to get hacked over time.

Total Accountability of Bridge Zones

ETHEREUM SCALING

MULTI-APPLICATION INTEGRATION

By using this website, you agree to our
Cookie Policy.

https://docs.google.com/presentation/d/1CjD0W4l4-CwHKUvfF5Vlps76fKLEC6pIwu1a_kC_YRQ/mobilepresent?slide=id.gd284b9333_0_28
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 11/32

Zones can also serve as blockchain-backed versions of enterprise and government
systems, where pieces of a particular service that are traditionally run by an
organization or group of organizations are instead run as a ABCI application on a
certain zone, which allows it to inherit the security and interoperability of the public
Cosmos network without sacrificing control over the underlying service. Thus,
Cosmos may offer the best of both worlds for organizations looking to utilize
blockchain technology but who are wary of relinquishing control completely to a
distributed third party.

Some claim that a major problem with consistency-favouring consensus algorithms
like Tendermint is that any network partition which causes there to be no single
partition with >⅔ voting power (e.g. ≥⅓ going offline) will halt consensus
altogether. The Cosmos architecture can help mitigate this problem by using a
global hub with regional autonomous zones, where voting power for each zone are
distributed based on a common geographic region. For instance, a common
paradigm may be for individual cities, or regions, to operate their own zones while
sharing a common hub (e.g. the Cosmos Hub), enabling municipal activity to persist
in the event that the hub halts due to a temporary network partition. Note that this
allows real geological, political, and network-topological features to be considered
in designing robust federated fault-tolerant systems.

NameCoin was one of the first blockchains to attempt to solve the name-resolution
problem by adapting the Bitcoin blockchain. Unfortunately there have been several
issues with this approach.

With Namecoin, we can verify that, for example, @satoshi was registered with a
particular public key at some point in the past, but we wouldn’t know whether the
public key had since been updated recently unless we download all the blocks since
the last update of that name. This is due to the limitation of Bitcoin’s UTXO
transaction Merkle-ization model, where only the transactions (but not mutable
application state) are Merkle-ized into the block-hash. This lets us prove existence,
but not the non-existence of later updates to a name. Thus, we can’t know for
certain the most recent value of a name without trusting a full node, or incurring
significant costs in bandwidth by downloading the whole blockchain.

Even if a Merkle-ized search tree were implemented in NameCoin, its dependency
on proof-of-work makes light client verification problematic. Light clients must
download a complete copy of the headers for all blocks in the entire blockchain (or
at least all the headers since the last update to a name). This means that the
bandwidth requirements scale linearly with the amount of time [21]. In addition,
name-changes on a proof-of-work blockchain requires waiting for additional proof-
of-work confirmation blocks, which can take up to an hour on Bitcoin.

With Tendermint, all we need is the most recent block-hash signed by a quorum of
validators (by voting power), and a Merkle proof to the current value associated
with the name. This makes it possible to have a succinct, quick, and secure light-
client verification of name values.

In Cosmos, we can take this concept and extend it further. Each name-registration
zone in Cosmos can have an associated top-level-domain (TLD) name such as
“.com” or “.org”, and each name-registration zone can have its own governance
and registration rules.

NETWORK PARTITION MITIGATION

FEDERATED NAME RESOLUTION SYSTEM

By using this website, you agree to our
Cookie Policy.

https://en.bitcoin.it/wiki/Thin_Client_Security
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 12/32

While the Cosmos Hub is a multi-asset distributed ledger, there is a special native
token called the atom. Atoms are the only staking token of the Cosmos Hub. Atoms
are a license for the holder to vote, validate, or delegate to other validators. Like
Ethereum’s ether, atoms can also be used to pay for transaction fees to mitigate
spam. Additional inflationary atoms and block transaction fees are rewarded to
validators and delegators who delegate to validators.

The BurnAtomTx transaction can be used to recover any proportionate amount of
tokens from the reserve pool.

The initial distribution of atom tokens and validators on Genesis will go to the
donors of the Cosmos Fundraiser (75%), lead donors (5%), Cosmos Network
Foundation (10%), and ALL IN BITS, Inc (10%). From genesis onward, 1/3 of the total
amount of atoms will be rewarded to bonded validators and delegators every year.

See the Cosmos Plan for additional details.

Unlike Bitcoin or other proof-of-work blockchains, a Tendermint blockchain gets
slower with more validators due to the increased communication complexity.
Fortunately, we can support enough validators to make for a robust globally
distributed blockchain with very fast transaction confirmation times, and, as
bandwidth, storage, and parallel compute capacity increases, we will be able to
support more validators in the future.

On genesis day, the maximum number of validators will be set to 100, and this
number will increase at a rate of 13% for 10 years, and settle at 300 validators.

Year 0: 100
Year 1: 113
Year 2: 127
Year 3: 144
Year 4: 163
Year 5: 184
Year 6: 208
Year 7: 235
Year 8: 265
Year 9: 300
Year 10: 300
...

Atom holders who are not already can become validators by signing and submitting
a BondTx transaction. The amount of atoms provided as collateral must be
nonzero. Anyone can become a validator at any time, except when the size of the
current validator set is greater than the maximum number of validators allowed. In
that case, the transaction is only valid if the amount of atoms is greater than the
amount of effective atoms held by the smallest validator, where effective atoms
include delegated atoms. When a new validator replaces an existing validator in

Issuance and Incentives

THE ATOM TOKEN

Fundraiser

LIMITATIONS ON THE NUMBER OF VALIDATORS

BECOMING A VALIDATOR AFTER GENESIS DAY

By using this website, you agree to our
Cookie Policy.

https://github.com/cosmos/cosmos/blob/master/PLAN.md
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 13/32

such a way, the existing validator becomes inactive and all the atoms and delegated
atoms enter the unbonding state.

There must be some penalty imposed on the validators for any intentional or
unintentional deviation from the sanctioned protocol. Some evidence is
immediately admissible, such as a double-sign at the same height and round, or a
violation of “prevote-the-lock” (a rule of the Tendermint consensus protocol).
Such evidence will result in the validator losing its good standing and its bonded
atoms as well its proportionate share of tokens in the reserve pool – collectively
called its “stake” – will get slashed.

Sometimes, validators will not be available, either due to regional network
disruptions, power failure, or other reasons. If, at any point in the past
ValidatorTimeoutWindow blocks, a validator’s commit vote is not included in
the blockchain more than ValidatorTimeoutMaxAbsent times, that validator will
become inactive, and lose ValidatorTimeoutPenalty (DEFAULT 1%) of its stake.

Some “malicious” behavior does not produce obviously discernable evidence on
the blockchain. In these cases, the validators can coordinate out of band to force
the timeout of these malicious validators, if there is a supermajority consensus.

In situations where the Cosmos Hub halts due to a ≥⅓ coalition of voting power
going offline, or in situations where a ≥⅓ coalition of voting power censor
evidence of malicious behavior from entering the blockchain, the hub must recover
with a hard-fork reorg-proposal. (Link to “Forks and Censorship Attacks”).

Cosmos Hub validators can accept any token type or combination of types as fees
for processing a transaction. Each validator can subjectively set whatever exchange
rate it wants, and choose whatever transactions it wants, as long as the
BlockGasLimit is not exceeded. The collected fees, minus any taxes specified
below, are redistributed to the bonded stakeholders in proportion to their bonded
atoms, every ValidatorPayoutPeriod (DEFAULT 1 hour).

Of the collected transaction fees, ReserveTax (DEFAULT 2%) will go toward the
reserve pool to increase the reserve pool and increase the security and value of the
Cosmos network. These funds can also be distributed in accordance with the
decisions made by the governance system.

Atom holders who delegate their voting power to other validators pay a
commission to the delegated validator. The commission can be set by each
validator.

The security of the Cosmos Hub is a function of the security of the underlying
validators and the choice of delegation by delegators. In order to encourage the
discovery and early reporting of found vulnerabilities, the Cosmos Hub encourages
hackers to publish successful exploits via a ReportHackTx transaction that says,
“This validator got hacked. Please send bounty to this address”. Upon such an
exploit, the validator and delegators will become inactive, HackPunishmentRatio
(default 5%) of everyone’s atoms will get slashed, and HackRewardRatio (default
5%) of everyone’s atoms will get rewarded to the hacker’s bounty address. The
validator must recover the remaining atoms by using their backup key.

PENALTIES FOR VALIDATORS

TRANSACTION FEES

INCENTIVIZING HACKERS

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 14/32

In order to prevent this feature from being abused to transfer unvested atoms, the
portion of vested vs unvested atoms of validators and delegators before and after
the ReportHackTx will remain the same, and the hacker bounty will include some
unvested atoms, if any.

The Cosmos Hub is operated by a distributed organization that requires a well-
defined governance mechanism in order to coordinate various changes to the
blockchain, such as the variable parameters of the system, as well as software
upgrades and constitutional amendments.

All validators are responsible for voting on all proposals. Failing to vote on a
proposal in a timely manner will result in the validator being deactivated
automatically for a period of time called the AbsenteeismPenaltyPeriod
(DEFAULT 1 week).

Delegators automatically inherit the vote of the delegated validator. This vote may
be overridden manually. Unbonded atoms get no vote.

Each proposal requires a deposit of MinimumProposalDeposit tokens, which may
be a combination of one or more tokens including atoms. For each proposal, the
voters may vote to take the deposit. If more than half of the voters choose to take
the deposit (e.g. because the proposal was spam), the deposit goes to the reserve
pool, except any atoms which are burned.

For each proposal, voters may vote with the following options:

Yea

YeaWithForce

Nay

NayWithForce

Abstain

A strict majority of Yea or YeaWithForce votes (or Nay or NayWithForce votes) is
required for the proposal to be decided as passed (or decided as failed), but 1/3+
can veto the majority decision by voting “with force”. When a strict majority is
vetoed, everyone gets punished by losing VetoPenaltyFeeBlocks (DEFAULT 1
day’s worth of blocks) worth of fees (except taxes which will not be affected), and
the party that vetoed the majority decision will be additionally punished by losing
VetoPenaltyAtoms (DEFAULT 0.1%) of its atoms.

Any of the parameters defined here can be changed with the passing of a
ParameterChangeProposal .

Atoms can be inflated and reserve pool funds spent with the passing of a
BountyProposal .

GOVERNANCE SPECIFICATION

PARAMETER CHANGE PROPOSAL

BOUNTY PROPOSAL

TEXT PROPOSAL

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 15/32

All other proposals, such as a proposal to upgrade the protocol, will be coordinated
via the generic TextProposal .

See the Plan.

There have been many innovations in blockchain consensus and scalability in the
past couple of years. This section provides a brief survey of a select number of
important ones.

Consensus in the presence of malicious participants is a problem dating back to the
early 1980s, when Leslie Lamport coined the phrase “Byzantine fault” to refer to
arbitrary process behavior that deviates from the intended behavior, in contrast to
a “crash fault”, wherein a process simply crashes. Early solutions were discovered
for synchronous networks where there is an upper bound on message latency,
though practical use was limited to highly controlled environments such as airplane
controllers and datacenters synchronized via atomic clocks. It was not until the late
90s that Practical Byzantine Fault Tolerance (PBFT) [11] was introduced as an
efficient partially synchronous consensus algorithm able to tolerate up to ⅓ of
processes behaving arbitrarily. PBFT became the standard algorithm, spawning
many variations, including most recently one created by IBM as part of their
contribution to Hyperledger.

The main benefit of Tendermint consensus over PBFT is that Tendermint has an
improved and simplified underlying structure, some of which is a result of
embracing the blockchain paradigm. Tendermint blocks must commit in order,
which obviates the complexity and communication overhead associated with
PBFT’s view-changes. In Cosmos and many cryptocurrencies, there is no need to
allow for block N+i where i >= 1 to commit, when block N itself hasn’t yet
committed. If bandwidth is the reason why block N hasn’t committed in a Cosmos
zone, then it doesn’t help to use bandwidth sharing votes for blocks N+i. If a
network partition or offline nodes is the reason why block N hasn’t committed,
then N+i won’t commit anyway.

In addition, the batching of transactions into blocks allows for regular Merkle-
hashing of the application state, rather than periodic digests as with PBFT’s
checkpointing scheme. This allows for faster provable transaction commits for light-
clients and faster inter-blockchain communication.

Tendermint BFT also includes many optimizations and features that go above and
beyond what is specified in PBFT. For example, the blocks proposed by validators

Roadmap

Related Work

CONSENSUS SYSTEMS

Classic Byzantine Fault Tolerance

By using this website, you agree to our
Cookie Policy.

https://github.com/cosmos/cosmos/blob/master/PLAN.md
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 16/32

are split into parts, Merkle-ized, and gossipped in such a way that improves
broadcasting performance (see LibSwift [19] for inspiration). Also, Tendermint BFT
doesn’t make any assumption about point-to-point connectivity, and functions for
as long as the P2P network is weakly connected.

While not the first to deploy proof-of-stake (PoS), BitShares1.0 [12] contributed
considerably to research and adoption of PoS blockchains, particularly those known
as “delegated” PoS. In BitShares, stake holders elect “witnesses”, responsible
for ordering and committing transactions, and “delegates”, responsible for
coordinating software updates and parameter changes. BitShares2.0 aims to
achieve high performance (100k tx/s, 1s latency) in ideal conditions, with each block
signed by a single signer, and transaction finality taking quite a bit longer than the
block interval. A canonical specification is still in development. Stakeholders can
remove or replace misbehaving witnesses on a daily basis, but there is no
significant collateral of witnesses or delegators in the likeness of Tendermint PoS
that get slashed in the case of a successful double-spend attack.

Building on an approach pioneered by Ripple, Stellar [13] refined a model of
Federated Byzantine Agreement wherein the processes participating in consensus
do not constitute a fixed and globally known set. Rather, each process node curates
one or more “quorum slices”, each constituting a set of trusted processes. A
“quorum” in Stellar is defined to be a set of nodes that contain at least one
quorum slice for each node in the set, such that agreement can be reached.

The security of the Stellar mechanism relies on the assumption that the intersection
of any two quorums is non-empty, while the availability of a node requires at least
one of its quorum slices to consist entirely of correct nodes, creating a trade-off
between using large or small quorum-slices that may be difficult to balance without
imposing significant assumptions about trust. Ultimately, nodes must somehow
choose adequate quorum slices for there to be sufficient fault-tolerance (or any
“intact nodes” at all, of which much of the results of the paper depend on), and
the only provided strategy for ensuring such a configuration is hierarchical and
similar to the Border Gateway Protocol (BGP), used by top-tier ISPs on the internet
to establish global routing tables, and by that used by browsers to manage TLS
certificates; both notorious for their insecurity.

The criticism in the Stellar paper of the Tendermint-based proof-of-stake systems is
mitigated by the token strategy described here, wherein a new type of token called
the atom is issued that represent claims to future portions of fees and rewards. The
advantage of Tendermint-based proof-of-stake, then, is its relative simplicity, while
still providing sufficient and provable security guarantees.

BitcoinNG is a proposed improvement to Bitcoin that would allow for forms of
vertical scalability, such as increasing the block size, without the negative economic
consequences typically associated with such a change, such as the
disproportionately large impact on small miners. This improvement is achieved by
separating leader election from transaction broadcast: leaders are first elected by
proof-of-work in “micro-blocks”, and then able to broadcast transactions to be
committed until a new micro-block is found. This reduces the bandwidth
requirements necessary to win the PoW race, allowing small miners to more fairly
compete, and allowing transactions to be committed more regularly by the last
miner to find a micro-block.

BitShares delegated stake

Stellar

BitcoinNG

By using this website, you agree to our
Cookie Policy.

http://www.ds.ewi.tudelft.nl/fileadmin/pds/papers/PerformanceAnalysisOfLibswift.pdf
https://bitshares.org/technology/delegated-proof-of-stake-consensus/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 17/32

Casper [16] is a proposed proof-of-stake consensus algorithm for Ethereum. Its
prime mode of operation is “consensus-by-bet”. By letting validators iteratively
bet on which block they believe will become committed into the blockchain based
on the other bets that they have seen so far, finality can be achieved eventually.
link. This is an active area of research by the Casper team. The challenge is in
constructing a betting mechanism that can be proven to be an evolutionarily stable
strategy. The main benefit of Casper as compared to Tendermint may be in offering
“availability over consistency” – consensus does not require a >⅔ quorum of
voting power – perhaps at the cost of commit speed or implementation complexity.

The Interledger Protocol [14] is not strictly a scalability solution. It provides an ad
hoc interoperation between different ledger systems through a loosely coupled
bilateral relationship network. Like the Lightning Network, the purpose of ILP is to
facilitate payments, but it specifically focuses on payments across disparate ledger
types, and extends the atomic transaction mechanism to include not only hash-
locks, but also a quorum of notaries (called the Atomic Transport Protocol). The
latter mechanism for enforcing atomicity in inter-ledger transactions is similar to
Tendermint’s light-client SPV mechanism, so an illustration of the distinction
between ILP and Cosmos/IBC is warranted, and provided below.

1. The notaries of a connector in ILP do not support membership changes, and do
not allow for flexible weighting between notaries. On the other hand, IBC is
designed specifically for blockchains, where validators can have different
weights, and where membership can change over the course of the blockchain.

2. As in the Lightning Network, the receiver of payment in ILP must be online to
send a confirmation back to the sender. In a token transfer over IBC, the
validator-set of the receiver’s blockchain is responsible for providing
confirmation, not the receiving user.

3. The most striking difference is that ILP’s connectors are not responsible or
keeping authoritative state about payments, whereas in Cosmos, the validators
of a hub are the authority of the state of IBC token transfers as well as the
authority of the amount of tokens held by each zone (but not the amount of
tokens held by each account within a zone). This is the fundamental innovation
that allows for secure asymmetric transfer of tokens from zone to zone; the
analog to ILP’s connector in Cosmos is a persistent and maximally secure
blockchain ledger, the Cosmos Hub.

4. The inter-ledger payments in ILP need to be backed by an exchange orderbook,
as there is no asymmetric transfer of coins from one ledger to another, only the
transfer of value or market equivalents.

Sidechains [15] are a proposed mechanism for scaling the Bitcoin network via
alternative blockchains that are “two-way pegged” to the Bitcoin blockchain.
(Two-way pegging is equivalent to bridging. In Cosmos we say “bridging” to
distinguish from market-pegging). Sidechains allow bitcoins to effectively move
from the Bitcoin blockchain to the sidechain and back, and allow for
experimentation in new features on the sidechain. As in the Cosmos Hub, the
sidechain and Bitcoin serve as light-clients of each other, using SPV proofs to

Casper

HORIZONTAL SCALING

Interledger Protocol

Sidechains

By using this website, you agree to our
Cookie Policy.

https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://interledger.org/rfcs/0001-interledger-architecture/
https://blockstream.com/sidechains.pdf
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 18/32

determine when coins should be transferred to the sidechain and back. Of course,
since Bitcoin uses proof-of-work, sidechains centered around Bitcoin suffer from
the many problems and risks of proof-of-work as a consensus mechanism.
Furthermore, this is a Bitcoin-maximalist solution that doesn’t natively support a
variety of tokens and inter-zone network topology as Cosmos does. That said, the
core mechanism of the two-way peg is in principle the same as that employed by
the Cosmos network.

Ethereum is currently researching a number of different strategies to shard the
state of the Ethereum blockchain to address scalability needs. These efforts have
the goal of maintaining the abstraction layer offered by the current Ethereum
Virtual Machine across the shared state space. Multiple research efforts are
underway at this time. [18][22]

Cosmos and Ethereum 2.0 Mauve [22] have different design goals.

Cosmos is specifically about tokens. Mauve is about scaling general
computation.

Cosmos is not bound to the EVM, so even different VMs can interoperate.

Cosmos lets the zone creator determine who validates the zone.

Anyone can start a new zone in Cosmos (unless governance decides otherwise).

The hub isolates zone failures so global token invariants are preserved.

The Lightning Network is a proposed token transfer network operating at a layer
above the Bitcoin blockchain (and other public blockchains), enabling improvement
of many orders of magnitude in transaction throughput by moving the majority of
transactions outside of the consensus ledger into so-called “payment channels”.
This is made possible by on-chain cryptocurrency scripts, which enable parties to
enter into bilateral stateful contracts where the state can be updated by sharing
digital signatures, and contracts can be closed by finally publishing evidence onto
the blockchain, a mechanism first popularized by cross-chain atomic swaps. By
opening payment channels with many parties, participants in the Lightning Network
can become focal points for routing the payments of others, leading to a fully
connected payment channel network, at the cost of capital being tied up on
payment channels.

While the Lightning Network can also easily extend across multiple independent
blockchains to allow for the transfer of value via an exchange market, it cannot be
used to asymmetrically transfer tokens from one blockchain to another. The main
benefit of the Cosmos network described here is to enable such direct token
transfers. That said, we expect payment channels and the Lightning Network to
become widely adopted along with our token transfer mechanism, for cost-saving
and privacy reasons.

Ethereum Scalability Efforts

Cosmos vs Ethereum 2.0 Mauve

GENERAL SCALING

Lightning Network

Segregated Witness

By using this website, you agree to our
Cookie Policy.

https://github.com/ethereum/EIPs/issues/53
http://vitalik.ca/files/mauve_paper.html
http://vitalik.ca/files/mauve_paper.html
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 19/32

Segregated Witness is a Bitcoin improvement proposal link that aims to increase
the per-block transaction throughput 2X or 3X, while simultaneously making block
syncing faster for new nodes. The brilliance of this solution is in how it works within
the limitations of Bitcoin’s current protocol and allows for a soft-fork upgrade (i.e.
clients with older versions of the software will continue to function after the
upgrade). Tendermint, being a new protocol, has no design restrictions, so it has a
different scaling priorities. Primarily, Tendermint uses a BFT round-robin algorithm
based on cryptographic signatures instead of mining, which trivially allows
horizontal scaling through multiple parallel blockchains, while regular, more
frequent block commits allow for vertical scaling as well.

A well designed consensus protocol should provide some guarantees in the event
that the tolerance capacity is exceeded and the consensus fails. This is especially
necessary in economic systems, where Byzantine behaviour can have substantial
financial reward. The most important such guarantee is a form of fork-
accountability, where the processes that caused the consensus to fail (ie. caused
clients of the protocol to accept different values - a fork) can be identified and
punished according to the rules of the protocol, or, possibly, the legal system.
When the legal system is unreliable or excessively expensive to invoke, validators
can be forced to make security deposits in order to participate, and those deposits
can be revoked, or slashed, when malicious behaviour is detected [10].

Note this is unlike Bitcoin, where forking is a regular occurence due to network
asynchrony and the probabilistic nature of finding partial hash collisions. Since in
many cases a malicious fork is indistinguishable from a fork due to asynchrony,
Bitcoin cannot reliably implement fork-accountability, other than the implicit
opportunity cost paid by miners for mining an orphaned block.

We call the voting stages PreVote and PreCommit. A vote can be for a particular
block or for Nil. We call a collection of >⅔ PreVotes for a single block in the same
round a Polka, and a collection of >⅔ PreCommits for a single block in the same
round a Commit. If >⅔ PreCommit for Nil in the same round, they move to the next
round.

Note that strict determinism in the protocol incurs a weak synchrony assumption as
faulty leaders must be detected and skipped. Thus, validators wait some amount of
time, TimeoutPropose, before they Prevote Nil, and the value of TimeoutPropose
increases with each round. Progression through the rest of a round is fully
asynchronous, in that progress is only made once a validator hears from >⅔ of the
network. In practice, it would take an extremely strong adversary to indefinitely
thwart the weak synchrony assumption (causing the consensus to fail to ever
commit a block), and doing so can be made even more difficult by using
randomized values of TimeoutPropose on each validator.

An additional set of constraints, or Locking Rules, ensure that the network will
eventually commit just one block at each height. Any malicious attempt to cause

Appendix

FORK ACCOUNTABILITY

TENDERMINT CONSENSUS

By using this website, you agree to our
Cookie Policy.

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 20/32

more than one block to be committed at a given height can be identified. First, a
PreCommit for a block must come with justification, in the form of a Polka for that
block. If the validator has already PreCommit a block at round R1, we say they are
_locked on that block, and the Polka used to justify the new PreCommit at round
R_2 must come in a round R_polka where R_1 < R_polka <= R_2. Second, validators
must Propose and/or PreVote the block they are locked on. Together, these
conditions ensure that a validator does not PreCommit without sufficient evidence
as justification, and that validators which have already PreCommit cannot
contribute to evidence to PreCommit something else. This ensures both safety and
liveness of the consensus algorithm.

The full details of the protocol are described here.

The need to sync all block headers is eliminated in Tendermint-PoS as the existence
of an alternative chain (a fork) means ≥⅓ of bonded stake can be slashed. Of
course, since slashing requires that someone share evidence of a fork, light clients
should store any block-hash commits that it sees. Additionally, light clients could
periodically stay synced with changes to the validator set, in order to avoid long
range attacks (but other solutions are possible).

In spirit similar to Ethereum, Tendermint enables applications to embed a global
Merkle root hash in each block, allowing easily verifiable state queries for things
like account balances, the value stored in a contract, or the existence of an unspent
transaction output, depending on the nature of the application.

Assuming a sufficiently resilient collection of broadcast networks and a static
validator set, any fork in the blockchain can be detected and the deposits of the
offending validators slashed. This innovation, first suggested by Vitalik Buterin in
early 2014, solves the nothing-at-stake problem of other proof-of-stake
cryptocurrencies (see Related Work). However, since validator sets must be able to
change, over a long range of time the original validators may all become
unbonded, and hence would be free to create a new chain from the genesis block,
incurring no cost as they no longer have deposits locked up. This attack came to be
known as the Long Range Attack (LRA), in contrast to a Short Range Attack, where
validators who are currently bonded cause a fork and are hence punishable
(assuming a fork-accountable BFT algorithm like Tendermint consensus). Long
Range Attacks are often thought to be a critical blow to proof-of-stake.

Fortunately, the LRA can be mitigated as follows. First, for a validator to unbond
(thereby recovering their collateral deposit and no longer earning fees to
participate in the consensus), the deposit must be made untransferable for an
amount of time known as the “unbonding period”, which may be on the order of
weeks or months. Second, for a light client to be secure, the first time it connects to
the network it must verify a recent block-hash against a trusted source, or
preferably multiple sources. This condition is sometimes referred to as “weak
subjectivity”. Finally, to remain secure, it must sync up with the latest validator set
at least as frequently as the length of the unbonding period. This ensures that the
light client knows about changes to the validator set before a validator has its
capital unbonded and thus no longer at stake, which would allow it to deceive the
client by carrying out a long range attack by creating new blocks beginning back at
a height where it was bonded (assuming it has control of sufficiently many of the
early private keys).

TENDERMINT LIGHT CLIENTS

PREVENTING LONG RANGE ATTACKS

By using this website, you agree to our
Cookie Policy.

https://github.com/tendermint/tendermint/wiki/Byzantine-Consensus-Algorithm
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 21/32

Note that overcoming the LRA in this way requires an overhaul of the original
security model of proof-of-work. In PoW, it is assumed that a light client can sync
to the current height from the trusted genesis block at any time simply by
processing the proof-of-work in every block header. To overcome the LRA,
however, we require that a light client come online with some regularity to track
changes in the validator set, and that the first time they come online they must be
particularly careful to authenticate what they hear from the network against trusted
sources. Of course, this latter requirement is similar to that of Bitcoin, where the
protocol and software must also be obtained from a trusted source.

The above method for preventing LRA is well suited for validators and full nodes of
a Tendermint-powered blockchain because these nodes are meant to remain
connected to the network. The method is also suitable for light clients that can be
expected to sync with the network frequently. However, for light clients that are not
expected to have frequent access to the internet or the blockchain network, yet
another solution can be used to overcome the LRA. Non-validator token holders
can post their tokens as collateral with a very long unbonding period (e.g. much
longer than the unbonding period for validators) and serve light clients with a
secondary method of attesting to the validity of current and past block-hashes.
While these tokens do not count toward the security of the blockchain’s
consensus, they nevertheless can provide strong guarantees for light clients. If
historical block-hash querying were supported in Ethereum, anyone could bond
their tokens in a specially designed smart contract and provide attestation services
for pay, effectively creating a market for light-client LRA security.

Due to the definition of a block commit, any ≥⅓ coalition of voting power can halt
the blockchain by going offline or not broadcasting their votes. Such a coalition can
also censor particular transactions by rejecting blocks that include these
transactions, though this would result in a significant proportion of block proposals
to be rejected, which would slow down the rate of block commits of the blockchain,
reducing its utility and value. The malicious coalition might also broadcast votes in
a trickle so as to grind blockchain block commits to a near halt, or engage in any
combination of these attacks. Finally, it can cause the blockchain to fork, by
double-signing or violating the locking rules.

If a globally active adversary were also involved, it could partition the network in
such a way that it may appear that the wrong subset of validators were responsible
for the slowdown. This is not just a limitation of Tendermint, but rather a limitation
of all consensus protocols whose network is potentially controlled by an active
adversary.

For these types of attacks, a subset of the validators should coordinate through
external means to sign a reorg-proposal that chooses a fork (and any evidence
thereof) and the initial subset of validators with their signatures. Validators who
sign such a reorg-proposal forego their collateral on all other forks. Clients should
verify the signatures on the reorg-proposal, verify any evidence, and make a
judgement or prompt the end-user for a decision. For example, a phone wallet app
may prompt the user with a security warning, while a refrigerator may accept any
reorg-proposal signed by +½ of the original validators by voting power.

No non-synchronous Byzantine fault-tolerant algorithm can come to consensus
when ≥⅓ of voting power are dishonest, yet a fork assumes that ≥⅓ of voting
power have already been dishonest by double-signing or lock-changing without
justification. So, signing the reorg-proposal is a coordination problem that cannot
be solved by any non-synchronous protocol (i.e. automatically, and without making
assumptions about the reliability of the underlying network). For now, we leave the

OVERCOMING FORKS AND CENSORSHIP ATTACKS

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 22/32

problem of reorg-proposal coordination to human coordination via social
consensus on internet media. Validators must take care to ensure that there are no
remaining network partitions prior to signing a reorg-proposal, to avoid situations
where two conflicting reorg-proposals are signed.

Assuming that the external coordination medium and protocol is robust, it follows
that forks are less of a concern than censorship attacks.

In addition to forks and censorship, which require ≥⅓ Byzantine voting power, a
coalition of >⅔ voting power may commit arbitrary, invalid state. This is
characteristic of any (BFT) consensus system. Unlike double-signing, which creates
forks with easily verifiable evidence, detecting committment of an invalid state
requires non-validating peers to verify whole blocks, which implies that they keep a
local copy of the state and execute each transaction, computing the state root
independently for themselves. Once detected, the only way to handle such a failure
is via social consensus. For instance, in situations where Bitcoin has failed, whether
forking due to software bugs (as in March 2013), or committing invalid state due to
Byzantine behavior of miners (as in July 2015), the well connected community of
businesses, developers, miners, and other organizations established a social
consensus as to what manual actions were required by participants to heal the
network. Furthermore, since validators of a Tendermint blockchain may be expected
to be identifiable, commitment of an invalid state may even be punishable by law
or some external jurisprudence, if desired.

ABCI consists of 3 primary message types that get delivered from the core to the
application. The application replies with corresponding response messages.

The AppendTx message is the work horse of the application. Each transaction in
the blockchain is delivered with this message. The application needs to validate
each transactions received with the AppendTx message against the current state,
application protocol, and the cryptographic credentials of the transaction. A
validated transaction then needs to update the application state — by binding a
value into a key values store, or by updating the UTXO database.

The CheckTx message is similar to AppendTx, but it’s only for validating
transactions. Tendermint BFT’s mempool first checks the validity of a transaction
with CheckTx, and only relays valid transactions to its peers. Applications may check
an incrementing nonce in the transaction and return an error upon CheckTx if the
nonce is old.

The Commit message is used to compute a cryptographic commitment to the
current application state, to be placed into the next block header. This has some
handy properties. Inconsistencies in updating that state will now appear as
blockchain forks which catches a whole class of programming errors. This also
simplifies the development of secure lightweight clients, as Merkle-hash proofs can
be verified by checking against the block-hash, and the block-hash is signed by a
quorum of validators (by voting power).

Additional ABCI messages allow the application to keep track of and change the
validator set, and for the application to receive the block information, such as the
height and the commit votes.

ABCI requests/responses are simple Protobuf messages. Check out the schema file.

ABCI SPECIFICATION

AppendTx

By using this website, you agree to our
Cookie Policy.

https://github.com/tendermint/abci/blob/master/types/types.proto
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 23/32

Arguments:

Data ([]byte) : The request transaction bytes

Returns:

Code (uint32) : Response code

Data ([]byte) : Result bytes, if any

Log (string) : Debug or error message

Usage:
Append and run a transaction. If the transaction is valid, returns CodeType.OK

Arguments:

Data ([]byte) : The request transaction bytes

Returns:

Code (uint32) : Response code

Data ([]byte) : Result bytes, if any

Log (string) : Debug or error message

Usage:
Validate a transaction. This message should not mutate the state. Transactions
are first run through CheckTx before broadcast to peers in the mempool layer.
You can make CheckTx semi-stateful and clear the state upon Commit or
BeginBlock , to allow for dependent sequences of transactions in the same
block.

Returns:

Data ([]byte) : The Merkle root hash

Log (string) : Debug or error message

Usage:
Return a Merkle root hash of the application state.

Arguments:

Data ([]byte) : The query request bytes

Returns:

Code (uint32) : Response code

Data ([]byte) : The query response bytes

Log (string) : Debug or error message

Usage:
Flush the response queue. Applications that implement types.Application need
not implement this message – it’s handled by the project.

CheckTx

Commit

Query

Flush

Info

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 24/32

Returns:

Data ([]byte) : The info bytes

Usage:
Return information about the application state. Application specific.

Arguments:

Key (string) : Key to set

Value (string) : Value to set for key

Returns:

Log (string) : Debug or error message

Usage:
Set application options. E.g. Key=“mode”, Value=“mempool” for a mempool
connection, or Key=“mode”, Value=“consensus” for a consensus connection.
Other options are application specific.

Arguments:

Validators ([]Validator) : Initial genesis-validators

Usage:
Called once upon genesis

Arguments:

Height (uint64) : The block height that is starting

Usage:
Signals the beginning of a new block. Called prior to any AppendTxs.

Arguments:

Height (uint64) : The block height that ended

Returns:

Validators ([]Validator) : Changed validators with new voting powers (0 to
remove)

Usage:
Signals the end of a block. Called prior to each Commit after all transactions

See the ABCI repository for more details.

There are several reasons why a sender may want the acknowledgement of delivery
of a packet by the receiving chain. For example, the sender may not know the
status of the destination chain, if it is expected to be faulty. Or, the sender may
want to impose a timeout on the packet (with the MaxHeight packet field), while

SetOption

InitChain

BeginBlock

EndBlock

IBC PACKET DELIVERY ACKNOWLEDGEMENT

By using this website, you agree to our
Cookie Policy.

https://github.com/tendermint/abci#message-types
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 25/32

any destination chain may suffer from a denial-of-service attack with a sudden
spike in the number of incoming packets.

In these cases, the sender can require delivery acknowledgement by setting the
initial packet status to AckPending . Then, it is the receiving chain’s responsibility
to confirm delivery by including an abbreviated IBCPacket in the app Merkle hash.

First, an IBCBlockCommit and IBCPacketTx are posted on “Hub” that proves
the existence of an IBCPacket on “Zone1”. Say that IBCPacketTx has the
following value:

FromChainID : “Zone1”

FromBlockHeight : 100 (say)

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200 (say)

Status : AckPending

Type : “coin”

MaxHeight : 350 (say “Hub” is currently at height 300)

Payload : <The bytes of a “coin” payload>

Next, an IBCBlockCommit and IBCPacketTx are posted on “Zone2” that proves
the existence of an IBCPacket on “Hub”. Say that IBCPacketTx has the
following value:

FromChainID : “Hub”

FromBlockHeight : 300

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 26/32

Status : AckPending

Type : “coin”

MaxHeight : 350

Payload : <The same bytes of a “coin” payload>

Next, “Zone2” must include in its app-hash an abbreviated packet that shows the
new status of AckSent . An IBCBlockCommit and IBCPacketTx are posted back
on “Hub” that proves the existence of an abbreviated IBCPacket on “Zone2”.
Say that IBCPacketTx has the following value:

FromChainID : “Zone2”

FromBlockHeight : 400 (say)

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200

Status : AckSent

Type : “coin”

MaxHeight : 350

PayloadHash : <The hash bytes of the same “coin” payload>

Finally, “Hub” must update the status of the packet from AckPending to
AckReceived . Evidence of this new finalized status should go back to “Zone2”.
Say that IBCPacketTx has the following value:

FromChainID : “Hub”

FromBlockHeight : 301

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200

Status : AckReceived

Type : “coin”

MaxHeight : 350

PayloadHash : <The hash bytes of the same “coin” payload>

Meanwhile, “Zone1” may optimistically assume successful delivery of a “coin”
packet unless evidence to the contrary is proven on “Hub”. In the example above,
if “Hub” had not received an AckSent status from “Zone2” by block 350, it
would have set the status automatically to Timeout . This evidence of a timeout
can get posted back on “Zone1”, and any tokens can be returned.

By using this website, you agree to our
Cookie Policy.

https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 27/32

There are two types of Merkle trees supported in the Tendermint/Cosmos
ecosystem: The Simple Tree, and the IAVL+ Tree.

The Simple Tree is a Merkle tree for a static list of elements. If the number of items
is not a power of two, some leaves will be at different levels. Simple Tree tries to
keep both sides of the tree the same height, but the left may be one greater. This
Merkle tree is used to Merkle-ize the transactions of a block, and the top level
elements of the application state root.

 *
 / \
 / \
 / \
 / \
 * *
 / \ / \
 / \ / \
 / \ / \
 * * * h6
 / \ / \ / \
 h0 h1 h2 h3 h4 h5

 A SimpleTree with 7 elements

The purpose of the IAVL+ data structure is to provide persistent storage for key-
value pairs in the application state such that a deterministic Merkle root hash can
be computed efficiently. The tree is balanced using a variant of the AVL algorithm,
and all operations are O(log(n)).

In an AVL tree, the heights of the two child subtrees of any node differ by at most
one. Whenever this condition is violated upon an update, the tree is rebalanced by
creating O(log(n)) new nodes that point to unmodified nodes of the old tree. In the
original AVL algorithm, inner nodes can also hold key-value pairs. The AVL+
algorithm (note the plus) modifies the AVL algorithm to keep all values on leaf

MERKLE TREE & PROOF SPECIFICATION

Simple Tree

IAVL+ Tree

By using this website, you agree to our
Cookie Policy.

http://en.wikipedia.org/wiki/AVL_tree
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 28/32

nodes, while only using branch-nodes to store keys. This simplifies the algorithm
while keeping the merkle hash trail short.

The AVL+ Tree is analogous to Ethereum’s Patricia tries. There are tradeoffs. Keys
do not need to be hashed prior to insertion in IAVL+ trees, so this provides faster
ordered iteration in the key space which may benefit some applications. The logic is
simpler to implement, requiring only two types of nodes – inner nodes and leaf
nodes. The Merkle proof is on average shorter, being a balanced binary tree. On the
other hand, the Merkle root of an IAVL+ tree depends on the order of updates.

We will support additional efficient Merkle trees, such as Ethereum’s Patricia Trie
when the binary variant becomes available.

In the canonical implementation, transactions are streamed to the Cosmos hub
application via the ABCI interface.

The Cosmos Hub will accept a number of primary transaction types, including
SendTx , BondTx , UnbondTx , ReportHackTx , SlashTx , BurnAtomTx ,
ProposalCreateTx , and ProposalVoteTx , which are fairly self-explanatory and
will be documented in a future revision of this paper. Here we document the two
primary transaction types for IBC: IBCBlockCommitTx and IBCPacketTx .

An IBCBlockCommitTx transaction is composed of:

ChainID (string) : The ID of the blockchain

BlockHash ([]byte) : The block-hash bytes, the Merkle root which includes the
app-hash

BlockPartsHeader (PartSetHeader) : The block part-set header bytes, only
needed to verify vote signatures

BlockHeight (int) : The height of the commit

BlockRound (int) : The round of the commit

Commit ([]Vote) : The >⅔ Tendermint Precommit votes that comprise a block
commit

ValidatorsHash ([]byte) : A Merkle-tree root hash of the new validator set

ValidatorsHashProof (SimpleProof) : A SimpleTree Merkle-proof for proving
the ValidatorsHash against the BlockHash

AppHash ([]byte) : A IAVLTree Merkle-tree root hash of the application state

AppHashProof (SimpleProof) : A SimpleTree Merkle-proof for proving the
AppHash against the BlockHash

An IBCPacket is composed of:

Header (IBCPacketHeader) : The packet header

Payload ([]byte) : The bytes of the packet payload. Optional

PayloadHash ([]byte) : The hash for the bytes of the packet. Optional

Either one of Payload or PayloadHash must be present. The hash of an
IBCPacket is a simple Merkle root of the two items, Header and Payload . An

TRANSACTION TYPES

IBCBlockCommitTx

IBCPacketTx

By using this website, you agree to our
Cookie Policy.

http://en.wikipedia.org/wiki/Radix_tree
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 29/32

IBCPacket without the full payload is called an abbreviated packet.

An IBCPacketHeader is composed of:

SrcChainID (string) : The source blockchain ID

DstChainID (string) : The destination blockchain ID

Number (int) : A unique number for all packets

Status (enum) : Can be one of AckPending , AckSent , AckReceived , NoAck ,
or Timeout

Type (string) : The types are application-dependent. Cosmos reserves the
“coin” packet type

MaxHeight (int) : If status is not NoAckWanted or AckReceived by this
height, status becomes Timeout . Optional

An IBCPacketTx transaction is composed of:

FromChainID (string) : The ID of the blockchain which is providing this packet;
not necessarily the source

FromBlockHeight (int) : The blockchain height in which the following packet is
included (Merkle-ized) in the block-hash of the source chain

Packet (IBCPacket) : A packet of data, whose status may be one of
AckPending , AckSent , AckReceived , NoAck , or Timeout

PacketProof (IAVLProof) : A IAVLTree Merkle-proof for proving the packet’s
hash against the AppHash of the source chain at given height

The sequence for sending a packet from “Zone1” to “Zone2” through the
“Hub” is depicted in {Figure X}. First, an IBCPacketTx proves to “Hub” that the
packet is included in the app-state of “Zone1”. Then, another IBCPacketTx
proves to “Zone2” that the packet is included in the app-state of “Hub”. During
this procedure, the IBCPacket fields are identical: the SrcChainID is always
“Zone1”, and the DstChainID is always “Zone2”.

The PacketProof must have the correct Merkle-proof path, as follows:

IBC/<SrcChainID>/<DstChainID>/<Number>

When “Zone1” wants to send a packet to “Zone2” through “Hub”, the
IBCPacket data are identical whether the packet is Merkle-ized on “Zone1”, the
“Hub”, or “Zone2”. The only mutable field is Status for tracking delivery.

We thank our friends and peers for assistance in conceptualizing, reviewing, and
providing support for our work with Tendermint and Cosmos.

Zaki Manian of SkuChain provided much help in formatting and wording,
especially under the ABCI section

Jehan Tremback of Althea and Dustin Byington for helping with initial iterations

Acknowledgements

By using this website, you agree to our
Cookie Policy.

https://github.com/zmanian
https://www.skuchain.com/
https://github.com/jtremback
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 30/32

Andrew Miller of Honey Badger for feedback on consensus

Greg Slepak for feedback on consensus and wording

Also thanks to Bill Gleim and Seunghwan Han for various contributions.

Your name and organization here for your contribution

1 Bitcoin: https://bitcoin.org/bitcoin.pdf

2 ZeroCash: http://zerocash-project.org/paper

3 Ethereum: https://github.com/ethereum/wiki/wiki/White-Paper

4 TheDAO: https://download.slock.it/public/DAO/WhitePaper.pdf

5 Segregated Witness: https://github.com/bitcoin/bips/blob/master/bip-
0141.mediawiki

6 BitcoinNG: https://arxiv.org/pdf/1510.02037v2.pdf

7 Lightning Network: https://lightning.network/lightning-network-paper-DRAFT-
0.5.pdf

8 Tendermint: https://github.com/tendermint/tendermint/wiki

9 FLP Impossibility: https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

10 Slasher: https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-
stake-algorithm/

11 PBFT: http://pmg.csail.mit.edu/papers/osdi99.pdf

12 BitShares: https://bitshares.org/technology/delegated-proof-of-stake-
consensus/

13 Stellar: https://www.stellar.org/papers/stellar-consensus-protocol.pdf

14 Interledger: https://interledger.org/rfcs/0001-interledger-architecture/

15 Sidechains: https://blockstream.com/sidechains.pdf

16 Casper: https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-
ghost/

17 ABCI: https://github.com/tendermint/abci

18 Ethereum Sharding: https://github.com/ethereum/EIPs/issues/53

19 LibSwift:
http://www.ds.ewi.tudelft.nl/fileadmin/pds/papers/PerformanceAnalysisOfLibswif
t.pdf

20 DLS: http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf

21 Thin Client Security: https://en.bitcoin.it/wiki/Thin_Client_Security

22 Ethereum 2.0 Mauve Paper: http://vitalik.ca/files/mauve_paper.html

https://www.docdroid.net/ec7xGzs/314477721-ethereum-platform-review-
opportunities-and-challenges-for-private-and-consortium-blockchains.pdf.html

Citations

Unsorted links

By using this website, you agree to our
Cookie Policy.

http://soc1024.com/
https://eprint.iacr.org/2016/199
https://fixingtao.com/
https://github.com/gleim
http://www.seunghwanhan.com/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://zerocash-project.org/paper
http://zerocash-project.org/paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://download.slock.it/public/DAO/WhitePaper.pdf
https://download.slock.it/public/DAO/WhitePaper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://arxiv.org/pdf/1510.02037v2.pdf
https://arxiv.org/pdf/1510.02037v2.pdf
https://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
https://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
https://github.com/tendermint/tendermint/wiki
https://github.com/tendermint/tendermint/wiki
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
http://pmg.csail.mit.edu/papers/osdi99.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://bitshares.org/technology/delegated-proof-of-stake-consensus/
https://bitshares.org/technology/delegated-proof-of-stake-consensus/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://interledger.org/rfcs/0001-interledger-architecture/
https://interledger.org/rfcs/0001-interledger-architecture/
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://github.com/tendermint/abci
https://github.com/tendermint/abci
https://github.com/ethereum/EIPs/issues/53
https://github.com/ethereum/EIPs/issues/53
http://www.ds.ewi.tudelft.nl/fileadmin/pds/papers/PerformanceAnalysisOfLibswift.pdf
http://www.ds.ewi.tudelft.nl/fileadmin/pds/papers/PerformanceAnalysisOfLibswift.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://en.bitcoin.it/wiki/Thin_Client_Security
https://en.bitcoin.it/wiki/Thin_Client_Security
http://vitalik.ca/files/mauve_paper.html
http://vitalik.ca/files/mauve_paper.html
https://www.docdroid.net/ec7xGzs/314477721-ethereum-platform-review-opportunities-and-challenges-for-private-and-consortium-blockchains.pdf.html
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 31/32

I D E N T I T Y

About

Blog

Jobs

Media

Press Kit

P R O J E C T S

Cosmos SDK

Cosmos Hub

Tendermint Core

Interchain Standards

R E S O U R C E S

Whitepaper

Ecosystem

Community

Contributors

Design & Assets

Newsletters

Sign up for
Cosmos updates

Get the latest from the
Cosmos ecosystem and
engineering updates, straight
to your inbox.

You can unsubscribe at any time. Privacy
Policy

Your email SIGN UP

By using this website, you agree to our
Cookie Policy.

https://cosmos.network/about
https://blog.cosmos.network/
https://jobs.cosmos.network/
https://cosmos.network/media
https://cosmos.network/presskit
https://cosmos.network/sdk
https://hub.cosmos.network/
https://tendermint.com/
https://github.com/cosmos/ics
https://cosmos.network/resources/whitepaper
https://cosmos.network/ecosystem
https://cosmos.network/community
https://cosmos.network/contributors
https://cosmos.network/design
https://cosmos.network/newsletters
https://cosmos.network/privacy
https://www.cookiesandyou.com/

2020/12/29 Whitepaper - Resources - Cosmos Network

https://cosmos.network/resources/whitepaper 32/32

S U P P O R T

Tools

Roadmap

FAQ

This website is maintained by Tendermint
Inc. The contents and opinions of this
website are those of Tendermint Inc.

By using this website, you agree to our
Cookie Policy.

https://cosmos.network/tools
https://cosmos.network/roadmap
https://cosmos.network/resources/faq
https://blog.cosmos.network/
https://twitter.com/cosmos
https://www.linkedin.com/company/tendermint/
https://reddit.com/r/cosmosnetwork
https://t.me/cosmosproject
https://discord.gg/vcExX9T
https://www.youtube.com/c/CosmosProject
https://www.cookiesandyou.com/

