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Introduction
A Balancer Pool is an automated market maker with certain key properties that cause it to function as a self-

balancing weighted portfolio and price sensor.

Balancer turns the concept of an index fund on its head: instead of paying fees to portfolio managers to

rebalance your portfolio, you collect fees from traders, who rebalance your portfolio by following arbitrage

opportunities.

Balancer is based on a particular N-dimensional surface which de�nes a cost function for the exchange of

any pair of tokens held in a Balancer Pool. This approach was �rst described by V. Buterin[0]

(https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/),



generalized by Alan Lu[1] (https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-

eea4e7452d6e), and proven viable for market making by the popular Uniswap[2] (https://uniswap.io) dapp.

We independently arrived at the same surface de�nition by starting with the requirement that any trade

must maintain a constant proportion of value in each asset of the portfolio. We applied an invariant-based

modeling approach described by Zargham et al[3] (https://arxiv.org/pdf/1807.00955.pdf) to construct this

solution. We will prove that these constant-value market makers have this property.
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Present Work
Index funds are a common �nancial instrument. The �rst index fund became effective in 1972. Ever since,

investors rely heavily on different portfolio strategies to hedge risk and achieve diversi�cation. Index funds

guarantee investors a constant and controlled exposure to a portfolio. If one of its assets out- or under-

performs, it is respectively sold or bought to keep its value share of the total portfolio constant.



Both in the conventional �nancial system as well as in the blockchain context, index funds and other types of

investment portfolios charge investors fees for managing and holding their funds. These fees are necessary

to pay for the costs of actively rebalancing the index funds, be it by manual traders or automatic bots.

There are many centralized solutions for portfolio management and for investing in index funds. These all

share some form of custodial risk.

We are aware of one decentralized (read: non-custodial) solution that shares all the fundamental

characteristics Balancer was designed to have: Uniswap (https://uniswap.io). This approach was �rst

described by V. Buterin

(https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/)

and generalized by Alan Lu (https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-

eea4e7452d6e).

We independently arrived at the same surface de�nition by starting with the requirement that any trade

must maintain a constant proportion of value in each asset of the portfolio. We applied an invariant-based

modeling approach described by Zargham et al (https://arxiv.org/pdf/1807.00955.pdf) to construct this

solution. We will prove that these constant-value market makers have this property.

Theory
Throughout this paper, we use the term “token” to refer to a generic asset because our �rst implementation

is a contract system that manipulates ERC20 tokens on the Ethereum network. However, there is nothing

fundamental about the Ethereum execution context that enables this market-making algorithm, which could

be offered by a traditional �nancial institution as a centralized (custodial) product.

Value Function
The bedrock of Balancer’s exchange functions is a surface de�ned by constraining a value function  — a

function of the pool’s weights and balances — to a constant. We will prove that this surface implies a spot

price at each point such that, no matter what exchanges are carried out, the share of value of each token in

the pool remains constant.

The value function  is de�ned as:

Where

 ranges over the tokens in the pool;

 is the balance of the token in the pool;

 is the normalized weight of the token, such that the sum of all normalized weights is 1.

By making  constant we can de�ne an invariant-value surface as illustrated in Fig.0.
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Each pair of tokens in a pool has a spot price de�ned entirely by the weights and balances of just that pair of

tokens. The spot price between any two tokens, , or in short , is the the ratio of the token

balances normalized by their weights:

Where:

 is the balance of token i, the token being sold by the trader which is going into the pool.

 is the balance of token o, the token being bought by the trader which is going out of the pool.

 is the weight of token i

 is the weight of token o

From this de�nition it is easy to see that if weights are held constant, the spot prices offered by Balancer

Pools only change with changing token balances. If the pool owner does not add or remove tokens to/from

the pool, token balances can only change through trades. The constant surface causes the price of tokens

being bought by the trader (token ) to increase and price of tokens being sold by the trader (token ) to

decrease. One can prove that whenever external market prices are different from those offered by a

Balancer Pool, an arbitrageur will make the most pro�t by trading with that pool until its prices equal those

on the external market. When this happens there is no more arbitrage opportunity. These arbitrage

opportunities guarantee that, in a rational market, prices offered by any Balancer Pool move in lockstep with

the rest of the market.

Effective Price
It is important to bear in mind that  is the spot price, which is the theoretical price for in�nitesimal

trades, which would incur no slippage. In reality, the effective price for any trade depends on the amount

being traded, which always causes a price change. If we de�ne  as the amount of token  being bought by

the trader and  as the amount of token  being sold by the trader, then we can de�ne the Effective Price as:

And as mentioned above,  tends to  when traded amounts tend to 0:

Spot Price Proof
Let’s now prove that this choice of  entails Eq.2.

First of all, we know that what the trader buys, , is subtracted from the contract’s balance. Therefore 

. Likewise, what the trader sells, , is added to the contract’s balance. Therefore .

Substituting in Eq.2 and Eq.3 we get:
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This limit is, by de�nition, minus the partial derivative of  in function of :

From the value function de�nition in Eq.1 we can isolate :

Now we use Eq.7 to expand the partial derivative in Eq.6:

which concludes our proof.

Constant Value Distribution Proof
We will now prove that:

1. Balancer Pools maintain a constant share of value across all tokens in the pool and;

2. These shares of value are equal to the weights associated to each token.
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Let’s calculate , the total pool value in terms of an arbitrary token  from the pool. Since we already know

that the pool has  tokens , let’s calculate how many tokens  all the other remaining tokens are worth. It

does not make sense to use their Effective Price relative to token  since we are not going to do any actual

trade. Instead, to calculate the theoretical value we use their Spot Price relative to token .

From Eq.2 we can calculate , i.e how many tokens  the balance of each token  is worth:

We know that the total pool value in terms of tokens  is the sum of the values of each token in terms of

tokens :

Now to calculate , the share of value each token  represents in the pool, all we have to do is divide the

value of each token , , by the total pool value, :

which proves both that the share each token represents of the total pool value is constant and also that it is

equal to the weight of that token.

Trading Formulas
Calculating the trade outcomes for any given Balancer Pool is easy if we consider that the Value Function

must remain invariant, i.e.  must have the same value before and after any trade. 

In reality,  will increase as a result of trading fees applied after a trade state transition. 

For more details on fees, see Implementation: Swap and Exit Fees

Out-Given-In
When a user sends tokens  to get tokens , all other token balances remain the same. Therefore, if we de�ne

 and  as the amount of tokens  and  exchanged, we can calculate the amount  a users gets when

sending . Knowing the value function after the trade should be the same as before the trade, we can write:

V t t

Bt t t

t

t

V t
n t n

V t
n = = Bn ⋅ = Bt ⋅ (8)

Bn

SP t
n

Bt

Wt

Bn

Wn

Wn

Wt

t

t

V t = ∑
k

V t
k

= Bt +∑
k≠t

V t
k

= Bt + ⋅∑
k≠t

Wn = ⋅ (Wt +∑
k≠t

Wn) = (9)
Bt

Wt

Bt

Wt

Bt

Wt

Sn n

n V t
n V t

Sn = = Wn (10)
V t
n

V t

V

V

i o

Ai Ao i o Ao

Ai

∏
k≠i,o

(Bk)Wk ⋅ (Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = ∏
k

(Bk)Wk   (11)

∏
k≠i,o

(Bk)Wk ⋅ (Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = ∏
k≠i,o

(Bk)Wk ⋅ BWo
o ⋅ BWi

i
  (12)



In-Given-Out
It is also very useful for traders to know how much they need to send of the input token  to get a desired

amount of output token . We can calculate the amount  as a function of  similarly as follows:

Notice that  as de�ned by Eq.11 tends to  when , as expected. This can be proved by

using L’Hopital’s rule, but this proof is out of the scope of this paper.

In-Given-Price
For practical purposes, traders intending to use our contract for arbitrage will like to know what amount of

tokens  –  – they will have to send to the contract to change the current spot price  to another

desired one . The desired spot price will usually be the external market price and, so long as the
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contract spot price differs from that of the external market, any arbitrageur can pro�t by trading with the

contract and bringing the contract price closer to that of the external market.

The highest pro�t possible by an arbitrageur is when they bring the contract spot price exactly to that of the

external market. As already mentioned, this is the main reason why our design is successful in keeping track

of the market prices. This makes it a reliable on-chain price sensor when implemented on a blockchain.

It can be proven that the amount of tokens  –  – a user needs to trade against tokens  so that the pool’s

spot price changes from  to  is:

Liquidity Providing Formulas
Pool Tokens
Pools can aggregate the liquidity provided by several different users. In order for them to be able to freely

deposit and withdraw assets from the pool, Balancer Protocol has the concept of pool tokens. Pool tokens

represent ownership of the assets contained in the pool. The outstanding supply of pool tokens is directly

proportional to the Value Function of the pool. If a deposit of assets increases the pool Value Function by

10%, then the outstanding supply of pool tokens also increases by 10%. This happens because the depositor

is issued 10% of new pool tokens in return for the deposit.

There are two ways in which one can deposit assets to the pool in return for pool tokens or redeem pool

tokens in return for pool assets:

Weighted-asset deposit/withdrawal

Single-asset deposit/withdrawal

All-Asset Deposit/Withdrawal
An “all-asset” deposit has to follow the distribution of existing assets in the pool. If the deposit contains 10%

of each of the assets already in the pool, then the Value Function will increase by 10% and the depositor will

be minted 10% of the current outstanding pool token supply. So to receive  pool tokens given an

existing total supply of , one needs to deposit  tokens k for each of the tokens in the pool:

Where  is the token balance of token k before the deposit.

Similarly, a weighted-asset withdrawal is the reverse operation where a pool token holder redeems their

pool tokens in return for a proportional share of each of the assets held by the pool. By redeeming 

pool tokens given an existing total supply of , one withdraws from the pool an amount  of token k

for each of the tokens in the pool:
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Where  is the token balance of token k before the withdrawal.

Single-Asset Deposit/Withdrawal
When a user wants to provide liquidity to a pool because they �nd its distribution of assets interesting, they

may likely not have all of the assets in the right proportions required for a weighted-asset deposit.

Balancer allows anyone to get pool tokens from a shared pool by depositing a single asset to it, provided that

the pool contains that asset. 

Depositing a single asset A to a shared pool is equivalent to depositing all pool assets proportionally and

then selling more of asset A to get back all the other tokens deposited. This way a depositor would end up

spending only asset A, since the amounts of the other tokens deposited would be returned through the

trades.

The amount of pool tokens one gets for depositing a single asset to a shared pool can be derived from the

Value Function described above.

Single-Asset Deposit

The increase in the pool token supply proportional to the increase in the Value Function. If we de�ne 

as the amount of pool tokens issued in return for the deposit, then:

Where  is the Value Function after the deposit and  is the Value Function before the deposit.

Considering also  the balance of asset k after the deposit and  its balance before the deposit, we have:

Let’s say the single-asset deposit was done in asset , then the balances of all other tokens do not change

after the deposit. We can then write:

If we de�ne  as the amount deposited in asset , then the new pool balance of asset t is $$B’t = B_t +

A_t$$. We can then substitute and get the �nal formula for the amount of new pool tokens issued $P{issued}

I_t$:
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Single-Asset Withdrawal

When a pool token holder wants to redeem their pool tokens  in return for a single asset , the

amount withdrawn in asset , , is:

Where  is the pool balance of asset  before the withdrawal.

Indeed, using the formulas of deposit and withdrawal de�ned above, not considering any fees, if one deposits

 asset  for  pool tokens and then redeems that same amount of pool tokens for asset , they will

get the same initial  back.

Trading Fees for Single-Asset Deposit Withdrawal
Depositing or withdrawing to/from a shared pool in a single asset  is equivalent to trading  of the

amount deposited for all the other assets in the pool.  of the amount deposited is held by the pool already

in the form of asset , so charging a trading fee on that share would be unfair.

Indeed, if we disregard any possible pool exit fees, depositing only asset  and instantly withdrawing asset 

will incur in the same trading fees as doing the trade from  to  using the trade function the pool offers.

Implementation
There are a few initial notes regarding the �rst release of Balancer. We will release a much more detailed

explanation of the system at the same time that the source code is released.

Free Software on Ethereum
Balancer is implemented as a GPL3-licensed Ethereum smart contract system.

Releases
The 🍂Bronze Release🍂 is the �rst of 3 planned releases of the Balancer Protocol. Bronze emphasizes code

clarity for audit and veri�cation, and does not go to great lengths to optimize for gas.

The ❄ Silver Release❄  will bring many gas optimizations and architecture changes that will reduce

transaction overhead and enable more �exibility for controlled pools.

The ☀ Golden Release☀  will introduce several new features to tie the whole system together.

Numerical Algorithms
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The formulas in the Theory section are suf�cient to describe the functional speci�cation, but they are not

straightforward to implement for the EVM, in part due to a lack of mature �xed-point math libraries.

Our implementation uses a combination of a few algebraic transformations, approximation functions, and

numerical hacks to compute these formulas with bounded maximum error and reasonable gas cost.

The rest of this section will be released at the same time as the Bronze release source code.

Controlled vs Finalized Pools
The 🍂Bronze Release🍂 allows two basic tiers of trust with respect to pools:

1. Controlled pools are con�gurable by a “controller” address. Only this address can add or remove

liquidity to the pool (call join  or exit ). This type of pool allows the change of pool assets types and

their weights. Note that since the controller is an address, this could in principle implement arbitrary

logic, like managing public deposits in a manner similar to a �nalized pool. The key difference is that

of�cial tooling will not recognize it as a “trustless” pool. Controlled pools with increased trust

requirements will be possible with the ❄ Silver Release❄ .

2. Finalized pools have �xed pool asset types, weights, and fees. Crucially, this enables join  and exit

to be publicly accessible in a safe, trustless manner while keeping a minimal implementation.

Swaps and Exit Fees
The 🍂Bronze Release🍂 charges fees in two situations: When traders exchange tokens (via swap  and its

variants), and when liquidity providers remove their liquidity from the pool (via exit  and its variants).

Both of these fees are con�gurable by the controller, but they are also �xed when the pool becomes

�nalized.

100% of the swap fee goes to the liquidity providers — the amount of the underlying token that can be

redeemed by each pool token increases.

Most of the exit fee is returned to the liquidity providers who remain in the pool. 

This is similar in spirit to a swap fee charged for exchanging pool tokens with underlying tokens.

The rest of the exit fee is transferred to an account controlled by Balancer Labs, Inc, for the development of

❄ Future Releases☀ .
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